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Topological population analysis from higher order
densities. I. Hartree–Fock level
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In this work we present the formulation of a topological population analysis derived from
reduced density matrices of arbitrary order. We describe the construction of a mathematical
framework which is suitable for handling any number of physical atomic regions. The proce-
dure provides appropriate tools for enabling the detection and direct localization of multicenter
bondings in molecules.
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1. Introduction

The formalism of population analysis has played an important role in the descrip-
tion and visualization of molecular structures and chemical bondings. The complexity
which usually features the wavefunction of anN-electron system is in part overcome
by the use of this procedure which extracts from the cumbersome wavefunction sim-
ple quantities of chemical interest. Concepts such as bond order, valence, charge den-
sity etc., which are so popular in chemical language, are directly obtained from this
treatment. Since the early studies of McWeeny and Mulliken [1,2], the idea of popu-
lation analysis has been extended and generalized by various authors [3–14] providing
information not only about classical two-center and two-electron (2c–2e) bonds [15,16]
but also about the eventual presence of multicenter bondings in which the electrons are
shared among more than two centers [17,20].

Despite the undeniable success of generalized population analyses for describing
and rationalizing the structure of various nontrivial molecular systems (metal clusters,
hypervalent molecules [21], electron deficient compounds [22]), it is true, however, that
all these procedures are not free from inherent limitations and restrictions [23–25]. Thus,
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e.g., these procedures can be applied only to wavefunctions obtained by ordinary LCAO
expansions in which the basis functions are centered in individual atoms. In addition to
this, another conceptual limitation of this approach concerns the arbitrary 1: 1 partition-
ing of the electronic charge between different basis functions, which can lead, especially
in the case of polar systems, to systematic bias in the values of bond indices and popu-
lations. Most of these shortcomings can be avoided by performing a partitioning of the
electronic charge in the physical space. Such a partitioning can, for example, be carried
out within the Atoms in Molecules (AIM) theory, in which an atom is regarded as a re-
gion of space bounded by a surface of zero flux in the gradient vector field of the electron
density [26–28]. Within this theory a partition of the real space is carried out according to
these atomic domains. In studies reported by several independent groups [29,30], a gen-
eralization of population analysis within AIM theory was performed and it was shown
that this approach allows one to characterize the extent of electron sharing between two
atomic regionsA andB by the so-called delocalization indexδ(A,B). However, these
quantities can straightforwardly be applied only to the elucidation of the structures of
molecules well described by Lewis model of localized (2c–2e) bond, but there are other
molecules whose bonding patterns are much more complex. Our aim in this paper is to
go beyond the classically bonded systems so that more complex bonding patterns can
be considered. We report appropriate mathematical tools to describe bondings involv-
ing a number of centers higher than two (multicenter bondings), within a topological
population analysis.

The paper is organized as follows. In the next section the basic concepts of popu-
lation analysis within the atomic region scheme are formulated in the second quantized
formalism. Section 3 carries out a generalization of those concepts constructing the ap-
propriate tools for describing three- and higher center bondings, which is the main aim
of this paper. Finally, in the last section we report the values of bond indices obtained
with these tools for some selected molecules at a Hartree–Fock level which prove the
reliability of the described approach.

2. Basic bonding concepts within second quantization formalism

Let us consider the well-known annihilation,ψ(λ), and creation,ψ†(λ), field op-
erators [31]

ψ(λ)=
∑
i

φi(λ)ci,

(1)
ψ†(λ)=

∑
i

φ∗i (λ)c
†
i ,

whereci andc†
i are the usual annihilation and creation fermion operators [31,32],{φi(λ)}

is a set of orthogonal spin-orbitals andλ stands for the spatialr and spinσ coordinates
of a fermion.
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Closing both sides of the productψ†(λ)ψ(λ) by anN-electron state|L〉 we obtain
the first-order reduced density functionρ1(λ) = 〈L|ψ†(λ)ψ(λ)|L〉 and integrating over
the whole space� we have∫

�

〈L|ψ†(λ)ψ(λ)|L〉dλ =
∑
i,j

〈L|c†
i cj |L〉

∫
�

φ∗i (λ)φj (λ)dλ = N. (2)

We can now consider the partitioning of the whole space� according to the Bader’s
atomic regions�A which, as is well known, are defined by surfaces having zero flux
in the gradient vector field of the electron density [26]. Taking into account that this
partitioning holds� = ⋃A �A and�A ∩ �B = ∅ (∀A,B A �= B), equation (2) can be
written

N =
∑
A

∑
i,j

1Di
j

〈
φi(λ)

∣∣φj (λ)〉�A =
∑
A

NA, (3)

where 1Di
j = 〈L|c†

i cj |L〉 are the matrix elements of the first-order reduced density
matrix (1-RDM) and〈φi(λ)|φj(λ)〉�A are the overlap integrals calculated over those
regions.NA is the corresponding charge of the atomic regionA.

The product of two pairs of operatorsψ†(λ1)ψ
†(λ2)ψ(λ2)ψ(λ1) leads to the

second-order reduced density functionρ2(λ1, λ2) = (1/2)〈L|ψ†(λ1)ψ
†(λ2)ψ(λ2)×

ψ(λ1)|L〉 and following an identical procedure it holds∫
�

〈L|ψ†(λ1)ψ
†(λ2)ψ(λ2)ψ(λ1)|L〉dλ1 dλ2

=
∑
i,j,k,l

〈L|c†
i c

†
kclcj |L〉

∫
�

φ∗i (λ1)φ
∗
k (λ2)φl(λ2)φj (λ1)dλ1 dλ2 = N(N − 1), (4)

which in terms of the atomic regions can be written(
N

2

)
=
∑
i,j,k,l

2Dik
jl

∑
A,B

〈
φi(λ1)

∣∣φj (λ1)
〉
�A

〈
φk(λ2)

∣∣φl(λ2)
〉
�B
, (5)

where2Dik
jl = (1/2)〈L|c†

i c
†
kclcj |L〉 are the matrix elements of the second-order reduced

density matrix (2-RDM).
The next step is to extract from equation (5) the structural information related to

the chemical bondings. Let us consider the Hartree–Fock level where theN-electron
state|L〉 is a Slater determinant, the matrix elements of the 1-RDM and 2-RDM are
related by the expression [33]

2Dik
jl =

1

2

(
1Di

j
1Dk

l − 1Di
l

1Dk
j

)
(6)

and the matrix elements1Di
j (HF) = niδij (ni is the occupation number of the Hartree–

Fock spin-orbitals in the HF determinant). In this situation equation (5) provides two
independent terms. The first one,N2 = (∑A NA)(

∑
B NB), comes from the first term

in equation (6); it is given by the product of two independent factors and, consequently,
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does not provide information about bonding. The second one, coming from the second
term (the exchange term) in equation (6), provides the information suitable for bonding
description and can be written as

N =
∑
A,B

occ∑
i

occ∑
j

〈
ϕi(λ1)

∣∣ϕj(λ1)
〉
�A

〈
ϕj(λ2)

∣∣ϕi(λ2)
〉
�B
, (7)

in which the set{ϕi(λ)} means the Hartree–Fock spin-orbitals. Alternatively, this equa-
tion can be written

N =
∑
A

�
(2)
A +

∑
A<B

�
(2)
AB, (8)

where�(2)A =
∑occ

i

∑occ
j 〈ϕi(λ1)|ϕj(λ1)〉�A〈ϕj (λ2)|ϕi(λ2)〉�A and�(2)AB = 2

∑occ
i

∑occ
j〈ϕi(λ1)|ϕj (λ1)〉�A〈ϕj (λ2)|ϕi(λ2)〉�B .

Equations (7) and (8) represent a partitioning of theN electrons of the system ac-
cording to AIM theory, at the Hartree–Fock level. The contribution�(2)A means the elec-
tronic localization into the regionA, while the�(2)AB provides a quantitative measure of
the sharing of electrons between the atomsA andB. Hence, these�(2)AB quantities, which
are equivalent to the previously reported delocalization indices [30], describe conven-
tional two-center bondings and can be related with the bond order [29,30,34]. Similar
equations also have been reported using fluctuation criteria [29,34]. However, we will
go beyond extending this treatment to the study of electronic delocalization within three
or more atomic regions, which is performed in the next section.

3. The extension to multicenter bondings

According to the above outlined procedure we can now start with the product of
three creation and annihilation field operatorsψ†(λ1)ψ

†(λ2)ψ
†(λ3)ψ(λ3)ψ(λ2)ψ(λ1)

which produces the third-order reduced density functionρ3(λ1, λ2, λ3). In this way we
obtain∫
�

〈L|ψ†(λ1)ψ
†(λ2)ψ

†(λ3)ψ(λ3)ψ(λ2)ψ(λ1)|L〉dλ1 dλ2 dλ3

=
∑

i,j,k,l,m,n

〈L|c†
i c

†
kc

†
mcnclcj |L〉

∫
�

φ∗i (λ1)φ
∗
k (λ2)φ

∗
m(λ3)φn(λ3)φl(λ2)φj (λ1)dλ1 dλ2 dλ3

= N(N − 1)(N − 2), (9)

or

∑
i,j,k,l,m,n

3Dikm
jln

∑
A,B,C

〈
φi(λ1)

∣∣φj (λ1)
〉
�A

〈
φk(λ2)

∣∣φl(λ2)
〉
�B

〈
φm(λ3)

∣∣φn(λ3)
〉
�C
=
(
N

3

)
,

(10)
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where3Dikm
jln = (1/6)〈L|c†

i c
†
kc

†
mcnclcj |L〉 are the matrix elements of the third-order re-

duced density matrix (3-RDM).
Equation (10) contains the information about any possible bondings involving two

and three centers as well as about the atomic charge in an atom. At the Hartree–Fock
level the 3-RDM elements are expressed as

3Dikm
jln =

1

6

(
1Di

j
1Dk

l
1Dm

n − 1Di
l

1Dk
j

1Dm
n − 1Di

n
1Dk

l
1Dm

j

− 1Di
j

1Dk
n

1Dm
l + 1Di

n
1Dk

j
1Dm

l + 1Di
l

1Dk
n

1Dm
j

)
, (11)

which is the counterpart version of formula (6) at the third order.
Taking into account equation (11) and1Di

j (HF) = niδij , formula (10) can be
straightforwardly transformed into

N =
∑
A,B,C

occ∑
i

occ∑
j

occ∑
k

〈
ϕi(λ1)

∣∣ϕj(λ1)
〉
�A

〈
ϕj(λ2)

∣∣ϕk(λ2)
〉
�B

〈
ϕk(λ3)

∣∣ϕi(λ3)
〉
�C
. (12)

Equation (12) allows us to perform the partitioning ofN electrons into mono-, bi-
and triatomic region contributions in the sense of Bader’s atomic regions, so that

N =
∑
A

�
(3)
A +

∑
A<B

�
(3)
AB +

∑
A<B<C

�
(3)
ABC. (13)

Hence, the above proposed integration of the third-order reduced density function is
the appropriate procedure for relating three atomic regions. In equation (13)�

(3)
ABC =

4
∑occ

i

∑occ
j

∑occ
k 〈ϕi(λ1)|ϕj(λ1)〉�A〈ϕj (λ2)|ϕk(λ2)〉�B 〈ϕk(λ3)|ϕi(λ3)〉�C can be consid-

ered the appropriate tools for describing three-center bondings within the topological
partitioning. They are the counterparts of the three-center indices described in the
Mulliken-like partition schemes [14,19,35].

The generalization of this procedure is straightforward. The product ofp pairs
of field operators produces thep-order reduced density functionρp(λ1, . . . , λp). Its
integration makes it possible to relatep atomic regions and enables one to introduce
indices for describingp-center bondings which have been detected by some authors [19].
The counterpart of formula (10) atp-order is

∑
i1,...,ip

∑
j1,...,jp

pD
i1,...,ip
j1,...,jp

∑
A1,...,Ap

〈
φi1(λ1)

∣∣φj1(λ1)
〉
�A1
· · · 〈φip (λp)∣∣φjp(λp)〉�Ap =

(
N

p

)
,

(14)

which at the Hartree–Fock level leads to

N =
∑

A1,...,Ap

occ∑
i1,...,ip

〈
ϕi1(λ1)

∣∣ϕi2(λ1)
〉
�A1
· · · 〈ϕip (λp)∣∣ϕi1(λp)〉�Ap , (15)

from which the correspondingp-center bond indices�(p)A1,...,Ap
can be directly derived.
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4. Results and discussion

In this section we report calculations performed in molecules in which the pres-
ence of three-center bondings is generally accepted as well as in molecules possessing
only classical (2c–2e) bondings. The purpose of these calculations is to demonstrate
the ability of the�(3)ABC indices for detecting and localizing the presence of three-center
bondings within the AIM theory. In principle, this population analysis can be carried
out at any level of the theory. However, correlated 3-RDM are not available in the usual
quantum chemical codes. This fact has led us to work at a first step at the Hartree–Fock
level, which is the only feasible approach in practice at present. In a subsequent study,
correlated density matrices will be used for the calculation of three-center bond indices
and the results will be published elsewhere [36].

The geometries of the studied molecules were optimized within the HF approach
in Dunning Huzinaga SDZVP basis set [37] except in the case of the H+

3 system in
which the partitioning was not achieved in this particular basis. The calculations were
performed using the Gaussian 94 programs [38] which generated the integrals involved
in equations (7) and (12). The above methodology was implemented in our laboratories
using our own codes which are available upon request. The results are summarized in
tables 1 and 2.

The results in table 1 refer to molecules in which the presence of three-center bond-
ings is generally accepted and they have been previously studied in a Mulliken-like pop-
ulation analysis scheme [13]. In this table only the non-negligible�

(3)
ABC values have

been included. Among all possible three-center contributions resulting from the parti-
tioning (13) for these systems, the only significant values are localized in the regions
where multicenter bondings are expected. Another interesting aspect is related to the
sign of the reported indices. In Mulliken-like population analyses, according to analyt-
ical models [39], the positive values of their corresponding three-center bond indices
have been interpreted as characteristic of (3c–2e) bonds and the negative ones as corre-
sponding to (3c–4e) bonds [40]. In this sense, the first conclusion that can be drawn is
that there is no qualitative difference in the prediction of the nature of the three-center
bondings in the Mulliken-like [13] and the present population analysis approaches.

Table 2 reports the results of partitionings (8) and (13) for several molecules in
which no three-center bondings have been described. In these systems, the values of

Table 1
Calculated values of AIM three-center indices in molecules possessing three-

center bonds.

System Fragment �
(3)
ABC Type Basis

H+3 HHH 0.444 (3c–2e) 6–31G
allylcation CCC 0.409 (3c–2e) D95(p, d)
allylanion CCC −0.111 (3c–4e) D95(p, d)

N2O NNO −0.208 (3c–4e) D95(p, d)
N−3 NNN −0.363 (3c–4e) D95(p, d)



R. Bochicchio et al. / Topological population analysis 89

Table 2
Calculated values of AIM bond indices in molecules possessing classical

(2c–2e) bonds in D95(p, d) basis.

System Fragment �
(3)
ABC,�

(3)
AB �

(2)
AB

H2O O–H 0.936 0.628
H–H 0.028 0.007
HOH 0.016 –

NH3 N–H 1.252 0.853
N–H 0.008 0.015
NHN 0.028 –
HHH 0.000 –

CH4 C–H 1.388 0.981
H–H 0.034 0.037
HCH 0.055 –
HHH 0.000 –

all possible multicenter indices are very small and the only nonvanishing values are
observed for two-center indices�(2)AB and�(3)AB which correspond to classically bonded
atoms. Moreover, both two-center indices fulfill the proportionality relation

�
(3)
AB ≈

3

2
�
(2)
AB, (16)

which has also been observed within the corresponding indices defined in Mulliken-like
schemes when no multicenter bondings are to be found [13].

In conclusion, this paper has presented a simple and systematic procedure to derive
classical and multicenter bond indices within a topological partitioning technique. The
preliminary results, calculated at the HF level, show that this treatment for localizing
three-center bondings in molecules is efficient. For the studied systems no qualitative
differences are to be found when our results are compared with those from Mulliken-like
treatments. However, the reported partitioning is free of the inherent basis dependency of
those treatments and opens up a new way for a straightforward investigation of molecules
in which the presence of multicenter (three and higher) bonds is to be expected.
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